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Predictability of VIX Jump Activities in Hedge Funds Returns 

 

Abstract 

The study indicates that Brownian motion, finite and infinite activity jumps are 

present in the ultra-high frequency VIX data. The total quadratic variation can be split 

into a continuous component of 29% and a jump component of 71%. Jump activities 

on ultra-high frequency VIX data are found informative in ex-ante identifying 

subgroups of hedge funds that deliver significant outperformance. In the months that 

follow large jump activities, strategies exposing to long tail risk tend to deliver positive 

performance in extreme market environments. In the months that follow small jump 

activities, possibly as a result of price reversals, most fund strategies exhibit losses in 

the jolting market environments. In the months that follow Brownian motion, strategies 

exposing to short volatility risk tend to deliver best performance. Hedge funds 

therefore deliver out-of-sample performance respective of types of jump activities on 

ultra-high frequency VIX. 

 

JEL classification: G12; G13; G14 

Keywords: Ultra-high frequency VIX; Infinite jump activity; Finite jump activity; 

Brownian motion; Hedge fund strategies  
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1. Introduction 

The study undertakes a model-free analysis of the ultra-high frequency 

movements on the Chicago Board Options Exchange (CBOE) Volatility Index (VIX). 

The CBOE VIX is a key measure of market expectations of near-term volatility 

conveyed by S&P 500 Index (SPX) option prices. The VIX is widely referred to as a 

broad signal of investor sentiment and market volatility. Whaley (2000) terms it the 

“investor fear gauge” or the “market temperature” that can tell us how optimistic or 

pessimistic investors are. The VIX is also believed to be an indicator of investor 

appetite for risk (Dash and Moran, 2005). 

Volatility in general, and VIX in particular, is widely thought to influence hedge 

fund returns (Drummond, 2005; Black, 2006; Dash and Moran, 2005; Bondarenko, 

2007; Avramov, Kosowski, Naik and Teo, 2011). Hedge funds often employ 

derivatives, short-selling, and leverage to generate returns during extreme states of the 

equity market, and this can lead to hedge funds being exposed to higher-moment risks 

of the equity market. The first differences in VIX have been used to proxy market 

volatility in the hedge fund literature (Agarwal, Bakshi and Huij, 2009). There is 

evidence that VIX can be a proxy for other economic drivers of hedge fund returns 

(Anson, Ho and Silberstein, 2005), since the change in VIX is correlated with proxies 

for the credit, liquidity, and correlation risks (Brunnermeier and Pedersen, 2009; 
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Boyson, Stahel and Stulz, 2010; Dudley and Nimalendran, 2011). Table 1 reports the 

hedge fund return exposure to monthly change in VIX across quintiles of SPX over 

October 2003 to July 2010. Within each group, we further split funds into those that 

have positive change in VIX and those that do not. Diversified hedge funds are 

negatively correlated to changes in VIX, except in the subgroup of lowest SPX 

accompanied with decreasing VIX. Trend Following and Managed Futures hedge 

funds outperform at times of market downturns, whereas Macro, Equity Market 

Neutral and Distressed Restructuring hedge funds benefit from low- to 

moderate-volatility environments (Anson and Ho, 2003). 

[Table 1 about here] 

We report in Figure 1 the average monthly hedge fund returns of each quintile 

across five states. The SPX, VIX and absolute percentage change in VIX are 

respectively sorted into five states. Consistent with Fung and Hsieh (2001) and 

Agarwal and Naik (2004), the results show that a large number of equity-oriented 

hedge fund strategies such as Equity Hedge, Convertible Arbitrage and Distressed 

Restructuring exhibit payoffs resembling a short position in an equity index put option 

and therefore bear significant left-tail risk. Other strategies such as Trend Following 

and Managed Futures deliver returns resembling those of a portfolio of straddles. Our 

evidence suggests that the success of these strategies hinges on the behavior of 
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various economic indicators. Therefore, conditioning on jump activities on VIX may 

allow one to better predict hedge fund returns over the volatility cycle. 

[Figure 1 about here] 

The factors that affect movements in the VIX, however, are always in flux. 

Being able to distinguish between continuity, small jumps, and large jumps in sample 

path of VIX movements and determining the relative magnitude of those components 

should be a welcome addition to the toolkit of investors, hedge fund managers, and 

regulators. It is thereby economically important to develop a statistical understanding 

of the fine structure of jumps in VIX. 

Statistical tests are developed to determine on the basis of the observed 

log-returns whether a jump component is present (Aït-Sahalia and Jacod, 2009b), 

whether the jumps have finite or infinite activity (Aït-Sahalia and Jacod, 2012), an 

estimate of a degree of jump activity (Aït-Sahalia and Jacod, 2009a), and whether a 

Brownian motion is needed when infinite activity jumps are included (Aït-Sahalia and 

Jacod, 2010). Alternative methodologies exist for studying the continuous and jump 

components from discretely sampled semimartingales, including (i) splitting the 

quadratic variation into continuous and discontinuous proportions to test for the 

presence of jumps (Aït-Sahalia, 2002; Carr and Wu, 2003; Barndorff-Nielsen and 

Shephard, 2004; Huang and Tauchen, 2005; Andersen, Bollerslev and Diebold, 2007; 



5 

Jiang and Oomen, 2008; Lee and Mykland, 2008; Lee and Hannig, 2010), (ii) using 

the statistic from Aït-Sahalia and Jacod (2009b) to identify the presence of a 

Brownian component (Tauchn and Todorov, 2010), and (iii) using threshold or 

truncation-based estimators of the continuous component of the quadratic variation to 

test for the presence of a continuous component (Mancini, 2001). 

The study uses the methodology developed by Aït-Sahalia (2004), Aït-Sahalia 

and Jacod (2009a,b) and Aït-Sahalia and Jacod (2010, 2012), which is a unified 

approach, to detect if there exists Brownian motion, infinite activities (small jumps), 

or finite activities (big jumps) in the ultra-high frequency VIX data.1 The basic 

methodology consists in constructing realized power variations of VIX increments, 

suitably truncated and/or sampled at different frequencies. For this to work, the VIX 

data need to have a lot of depth; that is, highly traded, down to the 15 seconds in this 

study. 

This paper begins by undertaking various model-free tests for presence of a 

continuous component, small jumps and large jumps from discrete observations 

compiled from movements in ultra-high frequency VIX data. Empirical results 

indicate that a continuous component, finite and infinite activity jumps are present in 

the ultra-high frequency VIX data. The degree of jump activity from Q4 2003 to Q2 

                                                   
1
 The authors fully acknowledge Aït-Sahalia and Jacod’s MATLAB codes to generate various test 

statistics, which are available on the website at http://www.princeton.edu/~yacine. 
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2010 is in the range from 1.71 to 1.95, indicating a very high degree of jump activity. 

The total quadratic variation can be split into a continuous component of 29% and a 

jump component of 71%, which by construction is attributable to small and big jumps. 

Relative to our findings, some (semi)parametric evidence for presence of jumps in the 

spot volatility has been proposed by Eraker, Johannes and Polson (2003), Eraker 

(2004), Broadie, Chernov and Johannes (2007), Todorov (2010), and Bjursell, Wang 

and Webb (2011). 

Since VIX contains ex-ante volatility, it may, in theory, have some predictive 

power in hedge fund returns that are affected by volatility. By examining 

out-of-sample hedge fund returns, jump activities on ultra-high frequency VIX data 

are informative in ex-ante identifying subgroups of hedge funds that deliver 

significant outperformance. In the months that follow large jumps, strategies exposing 

to long volatility and extreme market risk such as Trend Following and Managed 

Futures hedge funds tend to deliver positive performance in extreme market 

environments. In the months that follow small jumps, possibly as a result of trading 

illiquidity, most fund strategies exhibit losses in the jumping-around market 

environments. In the months that follow Brownian motion, strategies exposing to 

short volatility such as Risk Arbitrage, Merge Arbitrage, Event Driven, Equity Hedge 

and Relative Value tend to deliver best performance. 
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To summarize, the study goes nicely with the literature, trying to price VIX 

futures and options with either diffusion or jumps or both, or market-timing hedge 

fund strategies. The study points out to which type of models or hedge fund 

strategies researchers and practitioners should focus on when there exists purely 

Brownian motion, or jumps, or some combinations in the ultra-high frequency VIX 

data. 

The paper is organized as follows. Section 2 presents the measurement device 

designed to analyze which components are present, in what relative proportions, and 

the degree of activity of the jumps. Section 3 describes the data and reports the results 

of applying the measure devices to the time series of ultra-high frequency VIX. 

Section 4 uses jump activities on VIX as market-timing signals to exploit 

predictability in the performance of hedge fund strategies. Section 5 concludes. 

2. Methodology 

2.1  Measurement Device 

The study examines which component(s) of jumps, finite or infinite activity, 

and a continuous component, originating in a given unobserved path, need to be 

included in the observed ultra-high frequency VIX and their relative magnitude. The 

study uses 15-second VIX data to analyze their finer characteristics such as the degree 

of activity of jumps. Consider ��/∆�� observed increments of logarithmic VIX on 
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�0, ��, which are collected at a discrete sampling interval ∆�: 

∆�	 
��
� ≡ 
��
�	∆�∗ + �	 − �
��
��	���∆�∗ + �	��� (1) 

where �
��
�	∆�∗ , 
��
��	���∆�∗ � denote the true values; ��	 , �	��� are �.�.�. market 

microstructure noise, not depending of the observation frequency.  

Following Aït-Sahalia and Jacod (2012), the realized power variations of these 

increments, suitably truncated and/or sampled at different frequencies, are defined as 

���, ��, ∆�� = ∑ #∆�	 
��
�#$ × 1'#∆�( )�*+,#-.�/� /∆��	0�  (2) 

where � ≥ 0 is the power variable to accentuate either the continuous (� < 2) or 

jump (� > 2) components or to keep them both present (� = 2). A sequence of 

truncation levels �� > 0 can eliminate or retain only the increments larger than ��. 

Typically the truncation levels �� are usually achieved by taking 5 units of standard 

deviations of the continuous part 

�� = 5678Δ�	  (3) 

with 5 = �;/67�∆�<��/=  for some constants > ∈ �0,1/2�  and ; ∈ �0,1� . The 

behavior of the truncated power variations ���, �� , ∆��  depends on the degree of 

activity of the jumps when there are infinitely many jumps. 

Retaining only the increments larger than �� is written as 

@��, ��, ∆�� = ∑ #∆�	 
��
�#$ × 1'#∆�( )�*+,#A.�/� /∆��	0�  (4) 

, which can allow one to eliminate all the increments from the continuous part of the 
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model. Then obviously 

@��, ��, ∆�� = ���,∞, ∆�� − ���, ��, ∆��  (5) 

Placing �� → ∞, ���,∞, ∆��, gives no truncation at all. The number of increments 

of 
��
� from the jump part of the model is therefore counted as taking the power 

� = 0: 
@�0, ��, ∆�� = ∑ 1'#∆�( )�*+,#A.�/� /∆��	0�  (6) 

The study exploits the different asymptotic behavior of the variations 

���, ��, ∆�� and/or @��, ��, ∆�� by varying the power �, the truncation level �� 

and the sampling frequency ∆� . Formally, using observed high-frequency data 

originating in a given unobserved path, the study adopts the power variations method 

to address in which set(s) of jumps, finite or infinite activity, and Brownian motion 

the path of 
��
� defined pathwise on �0, �� contains. 

2.2  Ultra-High Frequency VIX Data 

The study uses ultra-high frequency VIX transactions from October 1, 2003 to 

June 30, 2010. The data source is the TickData database. The VIX indicator is only 

updated by the exchange every 15 seconds since Q4 2003; the VIX series are thus 

sampled every 15 seconds. The study does not include the overnight changes in VIX. 

Figure 2 shows the tail distributions of the log differences from VIX over the sample 

period, respectively sampled at 15-second and daily frequencies. The 15-second VIX 



10 

log differences centralize around zero with asymmetric long tails in relatively low 

probabilities. This histogram with large positive skewness and extremely high kurtosis 

is extraordinarily different from the one in the daily VIX log differences, which has 

much smaller positive skewness (almost insignificantly) and much less kurtosis (but 

still greater than 3). Being able to distinguish the distinct features between ultra-high 

frequency and daily data is therefore important, as it has implications for many high 

frequency trading strategies that rely on specific components of the model being 

present or absent. 

[Figure 2 about here] 

Using ultra-high frequency log differences as inputs, the study deconstructs the 

observed series back into its original components, continuous and jumps. Each one of 

the statistics is computed separately for each quarter of the sample period. The 

truncation cutoff level ��  is expressed in terms of a number 5  of standard 

deviations of the continuous part of the semimartingale. That initial annualized 

standard deviation estimate 67 = 0.3467 that is obtained by using ��2, 4 ×
6F78∆�, ∆�� with the median 6F7 = 0.25 of annualized standard deviation of daily 

changes in logarithmic VIX, serves to identify a reasonable range of values. The study 

then uses different multiples of it for the truncation level ��.  

3. Empirical Results 
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3.1  Jumps: Present or Not 

The test statistic IJ discriminates between jumps and no jumps based on 

observed data, but not among different types of jumps. Taking microstructure noise 

into account, the test statistic is given by 

 IJ��, K, ∆�� = 
L�$,M,N∆��L�$,M,∆�� O$A=,NP= 

				Q				RSST
UVW
VX1/K									Y���Z�[\	�]�^\	�]_��YZ\^																																																																						1/√K							a]�����b	\aa]a	�]_��YZ\^	�Y��	c�_�^	ℎY[\	e���Z\	YfZ�[�Zg�1															c�_�^	�a\^\�Z	Y��	�]	^�b��e�fY�Z	�]�^\																																									K$/=��					�]	c�_�^	�a\^\�Z	Y��	�]	^�b��e�fY�Z	�]�^\																																		

 (7) 

The histogram for empirical values of IJ is shown in Panel A of Figure 3. The 

data for the histogram are produced by computing IJ for the twenty-seven quarters 

from Q4 2003 to Q2 2010, and for a range of values of � from 3 to 6, ∆� from 15 

seconds to 2 minutes, and K =2, 3. As indicated in (7), values around 1 are indicative 

of jumps presence and the noise is not the major concern. Panel B of Figure 3 displays 

the mean value of IJ across values of � and K and the twenty-seven quarters as a 

function of ∆�. For very small values of Δ�, the noise dominates (limits below 1), 

then the limit is around 1 as Δ�  increases away from the noise-dominated 

frequencies. In general, the study finds that the average of IJ stays around 1 for the 

majority of its sampling frequencies. The conclusion from IJ is that the noise is not a 

major concern at the ultra high frequencies, and the evidence points towards the 
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presence of jumps. 

[Figure 3 about here] 

This conclusion confirms simple inspection of the tails of the 15-second 

log-return distribution in Figure 2. Clearly, a continuous component alone would be 

very unlikely to generate such returns in such tails. 

3.2  Jumps: Finite or Infinite Activity 

IJ tests whether jumps are likely to be present, but it cannot distinguish 

between finite and infinite activity jumps. The statistic Ihi, which is like IJ with the 

addition of truncation, discriminates between finite and infinite activity jumps based 

on observed data. Taking microstructure noise into account, the test statistic is given 

by 

 Ihi��, ��, K, ∆�� = 
L�$,.�,N∆��L�$,.�,∆�� O$A=,NP= 

				Q						RSSTUW
X1/K												Y���Z�[\	�]�^\	�]_��YZ\^																																																															�]	
�_�Z				a]�����b	\aa]a	�]_��YZ\^																																																													1																	��e���Z\	YfZ�[�Zg	c�_�^	�a\^\�Z	Y��	�]	^�b��e�fY�Z	�]�^\K$/=��						e���Z\	YfZ�[�Zg	c�_�^	�a\^\�Z	Y��	�]	^�b��e�fY�Z	�]�^\				  (8) 

The histogram in Panel A of Figure 4 is produced by computing for the 

twenty-seven quarters from Q4 2003 to Q2 2010 the value of Ihi for a range of 

values of � from 3 to 6, 5 from 5 to 10 standard deviations, Δ� from 15 seconds to 

2 minutes, and K=2, 3. The result shows that the empirical values of Ihi  are 

distributed around 1, which is indicative of infinite activity jumps and the noise is not 
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the major concern. The justification is that if only a finite number of jumps had been 

present, then the statistic should have behaved as if the process were continuous. 

Panel B of Figure 4 presents the mean value of Ihi across the twenty-seven 

quarters and values of �, 5 and K as a function of Δ�. For very small values of Δ� 

the limit is below 1 as indicative of noise dominating, then the infinite jump activity 

dominates (limits around 1) as Δ�  increases away from the noise-dominated 

frequencies. Based on the VIX data, the statistic Ihi identifies the likely presence of 

infinite activity jumps. 

[Figure 4 about here] 

For the robustness check, the study tests the null being infinite activity jumps 

and the alternative of finite activity jump by choosing j > 1 and �k > � > 2 and 

the I+i test statistic as follows: 

 I+i��, ��, j, ∆�� = 
L�$l,m.�,∆��L�$,.� ,n��L�$l,.�,n��L�$,m.�,∆��O$lA$A=,mA� 

				Q						RSSTo1														e���Z\	YfZ�[�Zg	c�_�^	�a\^\�Z	Y��	�]	^�b��e�fY�Z	�]�^\				j$l�$							��e���Z\	YfZ�[�Zg	c�_�^	�a\^\�Z	Y��	�]	^�b��e�fY�Z	�]�^\	 (9) 

As shown in Figure 5, the statistic I+i identifies the likely presence of finite jumps. 

[Figure 5 about here] 

3.3  Brownian Motion: Present or Not 

When infinitely many jumps are included, there are a number of models in the 

literature which dispense with the Brownian motion. The price process is then a 
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purely discontinuous Lévy process with infinite activity jumps, or more generally is 

driven by such a process. In order to decide whether the Brownian motion really 

exhibits in the data, or if it can be forgone with in favor of a pure jump process with 

infinite activity, the test statistic Ip discriminates between the Brownian motion and 

pure infinite activity jumps based on observed data. The null hypothesis is set to 

detect the presence of the Brownian motion, whereas the alternative assumes that 

there is no Brownian motion but exist infinitely active jumps. Taking microstructure 

noise into account, the test statistic is given by 

 Ip��, ��, K, ∆�� = 
L�$,.�,∆��L�$,.�,N∆��O	1<$q=,NP= 

 
				Q				RSST UW

X1/K																Y���Z�[\	�]�^\	�]_��YZ\^																																																				�]	
�_�Z							a]�����b	\aa]a	�]_��YZ\^																																																	1																				�]	�a]r��Y�	_]Z�]�	Y��	�]	^�b��e�fY�Z	�]�^\										K��$/=										�a]r��Y�	_]Z�]�	�a\^\�Z	Y��	�]	^�b��e�fY�Z	�]�^\ (10) 

Panel A of Figure 6 displays a histogram of the distribution of Ip obtained by 

computing its value for the twenty-seven quarters from Q4 2003 to Q2 2010 for a 

range of values of � from 1 to 1.75, 5 from 5 to 10 standard deviations, Δ� from 

15 seconds to 2 minutes, and K =2, 3. The majority of empirical estimates are on the 

side of the limit arising in the presence of a continuous component. As the sampling 

frequency increases, the noise becomes more of a factor, and for very high sampling 

frequencies, the results are indicative of little noise driving the asymptotics. This is 

confirmed by Panel B of Figure 6 which displays the mean value of Ip across the 
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twenty-seven quarters and values of �, 5 and K as a function of Δ�. As the study 

downsamples away from the noise-dominated frequencies, the average value of the 

statistic settles down towards the 1.5 indicating presence of a Brownian motion. The 

log-price process is not driven by a purely discontinuous Lévy process with infinite 

activity jumps. 

[Figure 6 about here] 

3.4  Relative Magnitude of the Components 

The previous empirical results indicate the presence of a jump and a continuous 

component. This section examines what fraction of the quadratic variation (s�) is 

attributable to the continuous and jump components. The relative magnitude of the 

two jump and continuous components in the total s� after taking microstructure 

noise into account is determined as 

UVV
W
VVX
0																																	Y���Z�[\	�]�^\	�]_��YZ\^																																				0																																		a]�����b	\aa]a	�]_��YZ\^																																	��2,��,∆����2,∞,∆�� 																		%	]e	s�	��\	Z]	Zℎ\	f]�Z���]�^	f]_�]�\�Z																																														Y��	�]	^�b��e�fY�Z	�]�^\1−	��2,��,∆����2,∞,∆�� 								%	]e	s�	��\	Z]	Zℎ\	c�_�	f]_�]�\�Z																																																											Y��	�]	^�b��e�fY�Z	�]�^\

		 (11) 

Since the conclusion from IJ, Ihi and Ip statistics is that the noise is not the 

major concern, it is feasible to calculate the relative magnitude of the two jump and 

continuous components in the total s�. Panel A of Figure 7 displays empirical 

distribution of the proportion of s� attributable to the Brownian component using 
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the twenty-seven quarters, values of 5 ranging from 2 to 5 standard deviations, and 

Δ�  from 15 seconds to 2 minutes. The study finds values attributable to the 

continuous component around 29%. In Panel B of Figure 7, the average fraction of 

s�  attributable to the continuous component is fairly stable as the sampling 

frequency varies.  

[Figure 7 about here] 

The percentage of s� attributable to jumps can be further decomposed into a small 

jump and a big jump component depending on the cutoff level �: 

 %s�	��\	Z]	u�b	c�_�^ = 	 @�2,�,∆����2,∞,∆��  (12) 

 %s�	��\	Z]	^_Y

	c�_�^ = 1− ��2,��,∆����2,∞,∆�� − 	 @�2,�,∆����2,∞,∆��  (13) 

3.5  Estimating the Degree of Jump Activity 

The previous statistics above indicate the presence of Brownian motion, finite 

activity jumps and infinite activity jumps in the data. Following Aït-Sahalia and Jacod 

(2012), the study indexes the activity of 
��
� as the Blumenthal-Getoor index v 

that characterizes the local behavior of the Lévy measure w near 0.2 Aït-Sahalia and 

Jacod (2012) propose an estimator of v in the presence of a continuous component 

of the model; that is, the test statistic allows one to eliminate the increments due to the 

continuous component. The test statistic is based on varying the actual cutoff level: 

                                                   
2
 The activity index is 2 asymptotically in a continuous martingale and 0 in a purely finite activity 

jumps model. 
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fix 0 < 5 < 5k  and consider two cutoffs �� = 5678Δ�  and ��k = 5k678Δ�  with 

j = 5k/5: 

v��5, j, Δ��|mA� = 
� y z�{,.� ,n��z�{,m.�,n��| /
��j� (14) 

Estimating v requires the largest sample size due to its reliance on truncating from 

the right in the power variations @. The degree of infinite jump activity v is thus 

estimated using a number of observations to the right of a cutoff �� given by 2 

standard deviations of the continuous part, values of j ranging from 1.50 to 1.75, 

and various sampling frequencies from 15 seconds to 2 minutes on a quarterly basis.  

Panel A of Figure 8 displays the empirical distribution of the index of jump 

activity v computed for the twenty-seven quarters from Q4 2003 to Q2 2010. Panel 

B of Figure 8 presents the average value of estimated v as a function of the sampling 

interval Δ� employed. In the presence of Brownian motion and infinite activity 

jumps, the estimated v is in the range from 1.71 to 1.95, indicating a very high 

degree of jump activity. A slightly dissenting result is Tauchen and Todorov (2011) 

who suggest that the latent spot volatility, extracted from high frequency VIX data, is 

a pure jump process with jumps of infinite variation and activity close to that of a 

continuous martingale. 

[Figure 8 about here] 

4. Market Timing Hedge Funds 
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This section classifies ultra-high VIX activities as Brownian motion, small 

jumps and large jumps, and uses these categories augmented with the sign of change 

in VIX as predictive variables to see whether jumping, moving around randomly, or 

Brownian motion could predict hedge fund performance.  

The study analyzes the ex-post out-of-sample performance of hedge funds using 

monthly returns reported in the Dow Jones Credit Suisse, Hedge Fund Research, and 

Institutional Advisory Services Group datasets over November 2003 to July 2010 ― a 

time period that covers both market upturns and downturns, as well as relatively calm 

and turbulent periods. Following Agarwal, Daniel and Naik (2009) and Avramov, 

Kosowski, Naik and Teo (2011) to classify hedge funds into different strategy classes, 

the multitude of hedge funds we use includes five investment categories: (i) 

directional traders consisting of Managed Futures, Macro/CTA and Trend Following, 

(ii) relative value consisting of Relative Value Arbitrage and Convertible Arbitrage, 

(iii) security selection consisting of Equity Hedge and Equity Market Neutral, (iv) 

multi-process consisting of Event Driven, Merger Arbitrage, Distressed Restructuring 

and Risk Arbitrage, and (v) fund of funds consisting of Equal Weighted and Global.3 

To understand the impact that jump activities on VIX have on fund performance, 

the study sorts funds into three groups based on whether their previous months are 

                                                   
3
 We acknowledge that there are many issues with hedge fund databases, such as selection, 

survivorship and instant history biases, which provide an upward bias to hedge fund returns. The 

purpose of our research is not to determine the absolute size of hedge fund returns, but rather to 

observe how hedge fund returns react to VIX activities. 
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dominated by large jumps, small jump, or Brownian motion. Next, within each group, 

the study further splits funds into those that have positive monthly change in VIX in 

their previous months and those that do not. The jump activities are detected based on 

intraday VIX activities within one month of data and are reformed every month. 

Given the sample period October 2003 to June 2010, there are in total 60 months 

dominated by large jumps including the Q4 2008 financial crisis, 3 by small jumps, 

and 18 by Brownian motion.4 Table 2 illustrates in-sample and out-of-sample market 

exposure to Brownian motion, small jumps and big jumps, respectively. The big 

jumps are usually accompanied with high VIX, high and, in particular, low SPX, as 

well as large variation in absolute percentage monthly changes in VIX. The Brownian 

motion usually exists with low VIX, medium SPX and low absolute percentage 

monthly change in VIX. Noticeably, in-sample market exposure of absolute 

percentage monthly change in VIX to small jumps significantly drops into a relatively 

low out-of-sample level. 

[Table 2 about here] 

Table 3 and Figure 9 evaluate the out-of-sample performance of hedge funds in 

each sub-group over the sample period. Traditional risk/return measures such as 

                                                   
4
 The months dominated by small jumps consist of June 2006, July 2006 and July 2007, while those 

mainly attributable to Brownian motion include October-November 2003, February-March 2004, 

May-August 2004, October 2004, January 2005, June 2005, April 2006, August 2006, October 2006, 

January 2007, April 2007, June 2007 and March 2010. The rest of the sample is dominated by large 

jumps. 
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Sharpe ratios and standard deviations are inadequate to measure risk for hedge funds 

with highly non-normal distributions and large tails. These are the three measures to 

gauge hedge performance when applied to a single hedge fund strategy: (i) using 

maximum drawdown as a downside risk measure; (ii) using adjusted conditional 

Value-at-Risk as a measure of extreme tail risk; and (iii) using extended Sharpe ratio 

as a measure of the excess return relative to risk with highly non-normal distributions 

and large tails. 

First measure is the magnitude of maximum drawdown for monthly returns on 

the hedge fund: 

}Y~����; �� = max{-�- ��{-�-�$��N − ��Z�� (15) 

where ��Z� is the out-of-sample monthly return respective of VIX jump activities, 

and �{-�-�$��N = max{-�q������� is the maximum monthly return in the [0,Z] period. 

}Y~����� is defined as the maximum sustained decline (peak to trough) for period 

�0, ��, which provides an intuitive and well-understood empirical measure of the loss 

arising from potential extreme events (Magdon-Ismail et al., 2004; Magdon-Ismail 

and Atiya, 2004). 

Second measure is the magnitude of the expected shortfall or conditional 

Value-at-Risk (��Y�) (Rockafellar and Uryasev, 2002) for monthly returns on the 

hedged fund at the confidence level 1 − �: 
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 ��Y�������h� = ���� + 6��� ∙ �����,���#� > 1− �� 
= ���� + 6��� × � ���

�� ���� + �� �����= − 1�I���+ �=� ������ − 3���������− ��� �2����� − 5�����I���= 
  � > 1 − �¡¢¢

¢£
 (16) 

where ��h is the monthly returns on the hedge fund that uses the Cornish-Fisher 

expansion to incorporate skewness and kurtosis into the return distribution (Cornish 

and Fisher, 1938; Baillie and Bollerslev, 1992; Liang and Park, 2010). ���� is the 

critical value for probability 1 − �  with standard normal distribution (e.g. 

���� =−1.64	YZ	� = 95%), while �, 6, I and � follow the standard definitions of 

mean, volatility, skewness and excess kurtosis, respectively, as computed from the 

monthly returns on the hedge fund. 

Third measure is the magnitude of the extended Sharpe ratio (denoted �I�) for 

monthly returns on the hedge fund: 

�I� = �¦§̈©§ y\ª + �= ��ª«6ª�= − �= ��ª�6ª�=| (17) 

where \ª = excess monthly return rate of the hedge fund ¬; 6ª = volatility of ¬; 

�ª« = ­�®�¦¯°,±�ª�,{�¦± ; �ª� = ­	��¦¯°,²¨±�ª�,{�¦²¨± ; for example, �� = 2.33  at � = 1%, 

���� =−2.33 at 1 − � =99%. Note that �I� is an omega-function-like measure. 

The numerator is a measure of upside cumulants while the standard deviation of 

returns in the denominator is replaced by a measure of downside cumulants (Karatzas 

and Shreve, 1998; Fernholz, 2002; Keating and Shadwick, 2002). This is a more 
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balanced measure from the perspective of not only minimizing risk (which also tends 

to minimize returns) but also achieving a balance between upside and downside 

moments, and is generally consistent with the real-world practice in that hedge fund 

managers tend to take risk to preserve upside.  

The hedge funds are found to deliver performance respective of market 

conditions. There is always some volatility-based risk in any hedge fund, but these 

sharp changes in value can be positive as well as negative. In one or more specific 

market conditions, market volatility can be exploited to the benefit of investors. Big 

jumps on VIX offer potentially sizable directions of markets to those who long or 

short markets attempting to capture their rise and fall, while Brownian motion on VIX 

attract trading styles of investment that is expected to be long and short comparable 

securities to capture value while eliminating the systematic risk of the markets. 

Finally, small infinite activity jumps on VIX are more likely to reflect immediate 

jolting market environment such as trading illiquidity. 

Trend Following, Managed Futures and Macro funds employ the market timing 

approach that bets on the directions of markets dynamically to achieve absolute return 

targets. Therefore, they are found to outperform in the months following big jumps 

relative to the months following small jumps and Brownian motion. In contrast, 

Relative Value, Equity Hedge, Event Driven, Convertible Arbitrage and Distressed 
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Restructuring funds are the non-directional style that attempt to extract value from a 

set of diversified arbitrage opportunities targeted at exploiting structural anomalies of 

markets. As a non-directional approach, it is a low volatility approach, and the returns 

resemble that of a high yielding bond-like instrument without the equivalent interest 

rate or credit risk. They are found to outperform in the months following Brownian 

motion. Further, many hedge funds outperform by buying illiquid securities and 

short-selling liquid securities. Naturally such funds are also susceptible to liquidity 

shocks like the 2008 Lehman Brothers collapse. When markets are illiquid, hedge 

fund performance is highly sensitive to changes in funding liquidity as well as asset 

liquidity and leads to higher volatility. Perhaps arbitrage funds in general are short 

liquidity as well as short volatility. They perform best in calm markets, and worse in 

the jumping-around markets that are driven by small jumps on VIX. It is likely that a 

common exposure to preceding small jumps on VIX drives negative performance in 

most of the funds. The returns of Risk Arbitrage, Convertible Arbitrage and Merger 

Arbitrage funds are the only investment styles that achieve positive average returns in 

the months following small jumps. However, only Merger Arbitrage funds escape the 

downturn in performance during the period following small jumps accompanied with 

increasing VIX. As a result, the ESR of Merger Arbitrage is found positive. 

[Table 3 about here] 
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[Figure 9 about here] 

Hedge funds are considered riskier than other types of investment vehicles 

because they employ strategies which can result in sharp losses if managed poorly. 

The study uses the following regression specification to evaluate the economic 

significance of manager skill conditional on jump activities on VIX. To adjust for risk, 

the study evaluates the performance of hedge funds relative to the Fung and Hsieh 

(2004) seven-factor model:5 

a	,� = ∑ v	,N³N,�Ń0� + ;	,�µ���µ�,��� + ;	,¶·�¶·,��� + ;	,¸·�¸·,��� + �	,� (18) 

where a	,� is the return on fund � in excess of the one-month Treasury bill return (the 

risk-free rate) in month Z. ³N,�  is the Kth risk factor of the benchmark factor model, 

including (i) the S&P 500 return minus the risk-free rate, I¹º}�³; (ii) the Russell 

2000 minus S&P 500 monthly total return, I�}»�; (iii) the monthly change in the 

10-year Treasury constant maturity yield, ��10���; (iv) monthly changes in the 

credit spread defined as Moody’s Baa bond yield minus the 10-year Treasury bond 

yield, �¼¼}�I½; and (v) excess returns on portfolios of lookback straddles on 

bonds (º�³I��), currencies (º�³I³�) and commodities (º�³I�¾}).6 The data on 

I¹º}�³ , I�}»� , ��10���, and �¼¼}�I½  are available from Datastream. 

                                                   
5
 Our results are not sensitive to augmenting the Fung and Hsieh (2004) model with the MSCI 

emerging markets index excess return, the Fama and French (1993) high-minus-low book-to-market 

factor, the Jegadeesh and Titman (1993) momentum factor, or the Pástor and Stambaugh (2003) 

liquidity factor. 
6
 The returns on º�³I��, º�³I³� and º�³I�¾}  are obtained from Fung and Hsieh’s data 

library http://faculty.fuqua.duke.edu/~dah7/HFRFData.htm/. 
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Finally, �	,� is fund �’s residual return in month Z. The three dummy variables are a 

convenient means of building discrete shifts of the excess fund returns in accordance 

with jump activities on VIX in month Z-1. We use the dummy variables so that we 

can pool different jump activities in the same regression. Specifically, �¸·,��� equals 

1 if month Z-1 is dominated by large jumps, and 0 otherwise. Similarly, ��µ�,��� 

equals 1 if month Z-1 is dominated by Brownian motion, and 0 otherwise. Finally, 

�¶·,��� equals 1 if month Z-1 is dominated by small jumps, and 0 otherwise. 

The intercept, or alpha, in Table 4, Figures 10 and 11 shows the risk-adjusted 

return to the level of expertise of the manager. The thirteen hedge funds, on average, 

earn a monthly alpha of 0.4243% and 0.6553% in the months following Brownian 

motion and big jumps, respectively, which lead to a monthly average return of 

0.3487% and 0.2054%. In contrast, the return following the months dominated by 

small jumps averages -0.8823%, because the funds have moved to a negative alpha of 

-1.0651% per month. This indicates that most of hedge fund managers fail to time 

occasional and small illiquidity by adjusting their portfolios’ market exposure.  

The results are consistent across the most individual hedge fund styles. In 

almost every hedge style, the big-jump and Brownian regimes have the positive 

impact on subsequent hedge fund alphas with the small-jump regime having the 

negative impact on subsequent hedge fund return alphas. There are three exceptions. 
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The first is Risk Arbitrage and Merger Arbitrage hedge funds where big-jump VIX 

regime has a negative impact on subsequent alphas. Second, Risk Arbitrage, Merger 

Arbitrage and Trend Following hedge funds show negative impact on subsequent 

alphas from VIX in Brownian motion regime. Third, with Merger Arbitrage and 

Distressed Restructuring hedge funds, the alphas following small-jump regime are 

positive. It is evidence that hedge fund alphas are enhanced more by preceding 

extreme volatility levels, both high and low, than by preceding mid-volatility levels.  

[Table 4 about here] 

[Figure 10 about here] 

[Figure 11 about here] 

To summarize, our results are consistent with the view that allowing for 

predictability based on jump activities on VIX is important in ex-ante identifying 

subgroups of hedge funds that deliver significant outperformance. Conditioning on 

large VIX jumps, funds that long volatility (such as Trend Following and Managed 

Futures) deliver significantly higher out-of-sample returns relative to funds that short 

volatility (such as Relative Value, Equity Hedge, Event Driven and Distressed 

Restructuring), which coincides with extreme bear markets. Many shorting volatility 

strategies, following the spike in volatility in Q4 2008, have been susceptible to 

sudden large losses and were exposed to the high (positive) downside market beta. 



27 

Long volatility strategies have gained popularity since 2008, primarily as a hedge 

against catastrophic scenarios, often referred to as “tail risk.” 

In the months that follow Brownian motion as a result of excluding the period 

with the 2008 financial crisis, hedge funds with negative volatility exposure tend to 

outperform those with positive volatility exposure. Using volatility as an asset class 

prior to the Q4 2008 financial crisis, therefore, tends to capture historical excess 

returns by selling volatility as well as various strategies involving combinations of 

option positions. This is consistent with the extant literature including Hafner and 

Wallmeier (2008) who analyze the implications of optimal investments in sizable 

short positions on variance swaps. Egloff, Leippold and Wu (2010) have an extensive 

analysis of how variance swaps fit into optimal portfolios in dynamic context that 

improve the ability of the investor to hedge time-variations in investment 

opportunities. Finally, in the months that follow small jumps on VIX, possibly as a 

result of trading illiquidity, the majority of hedge funds deliver negative returns, in 

particular when augmented with positive change in VIX. Therefore, detecting jump 

activities on ultra-high frequency VIX data can help forecast cross-sectional 

differences in hedge fund performance through their exposure to long or short 

volatility risk evaluated conditional on different VIX jump quintiles. 

5. Conclusions 
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The empirical results of the spectrogram methodology indicate the presence of 

a continuous component, occasional large jumps, and infinite activity jumps with a 

fairly high degree of jump activity in the ultra-high frequency VIX data. Jump 

components represent approximately 71% of the total quadratic variation with a 

degree of infinite activity jumps in the range from 1.71 to 1.95. To examine the 

impact of nature of VIX jump activities on market timing of hedge fund strategies, 

this study evaluates out-of-sample monthly performance of hedge funds conditioning 

on the jump activities on ultra-high frequency VIX data. The results suggest the 

economic value of predictability obtains for short-volatility strategies in the months 

that follow Brownian motion, while the strategies with long tail risk outperform in the 

months that follow large VIX jumps. In the months that follow small jump activities, 

possibly as a result of price reversals, most hedge fund strategies exhibit losses in the 

jolting market environments. Our evidence suggests that the success of hedge fund 

strategies hinges on the behavior of VIX jump activities.  

The contribution of this study is twofold. First, the study distinguishes between 

continuity, small jumps and large jumps on ultra-high frequency VIX data, and 

determines their relative magnitudes. Our results are informative as to the relevant 

directions such volatility traders may take. Second, allowing for predictability based 

on jump activities on VIX is important in ex-ante identifying subgroups of hedge 
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funds that deliver significant outperformance.  
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Table 1 Correlation of Hedge Fund Returns with Monthly Change in VIX across Quintiles of the S&P 500 Index 

The monthly hedge fund returns are sorted into five groups based on the S&P 500 index (SPX). Quintile 1 (Q1) consists of the worst months, and Quintile 5 (Q5) the best 

months. Next, within each group, we further split funds into those that have positive change in VIX and those that have negative change in VIX. We report the correlation 

between monthly returns and monthly change in VIX (∆�
�) of each sub-group. The sample is over the period October 2003 to July 2010.  
 

 s�(Low SPX) s= s� s� sÁ(High SPX) ÂÃÄÄÅÆÇÈÉÃÊ ¼

 ∆�
�< 0 

∆�
�> 0 
¼

 ∆�
�< 0 

∆�
�> 0 
¼

 ∆�
�< 0 

∆�
�> 0 
¼

 ∆�
�< 0 

∆�
�> 0 
¼

 ∆�
�< 0 

∆�
�> 0 �Ë�Y
	Ì\�bℎZ\�  -0.5807  0.3204  -0.9327  -0.6012  -0.5892  -0.5373  -0.8843  -0.4675  -0.9040  -0.0872  -0.1022  -0.8205  -0.4675  -0.2352  -0.7002  Í
]uY
 -0.6095  0.2272  -0.9412  -0.6517  -0.6133  -0.5762  -0.8848  -0.3877  -0.8954  -0.1636  -0.1275  -0.8144  -0.5457  -0.2523  -0.7073  �\
YZ�[\	¼au�ZaYb\ -0.4541  0.2287  -0.9290  -0.5796  -0.4098  -0.7057  -0.8912  -0.0469  -0.9407  -0.0892  -0.1088  -0.3899  -0.2463  -0.3693  -0.2810  �[\�Z	�a�[\� -0.5888  0.3122  -0.9389  -0.5096  -0.2841  -0.5875  -0.8801  -0.6444  -0.8942  -0.3916  0.0521  -0.8896  -0.5472  -0.1075  -0.4257  �Ë��Zg	Î\�b\ -0.6555  0.2774  -0.9664  -0.7218  -0.6303  -0.5833  -0.8832  -0.2162  -0.8864  -0.2791  -0.1248  -0.7430  -0.6179  -0.2232  -0.6385  ��^K	¼au�ZaYb\ -0.8216  -0.1394  -0.9764  -0.6287  -0.8320  -0.3663  -0.9070  -0.7995  -0.9215  -0.0811  0.0883  -0.7305  -0.3319  -0.2863  -0.3786  �]�[\aZ�u
\	¼au�ZaYb\ -0.5393  0.4011  -0.9359  -0.3489  -0.2387  -0.8571  -0.8826  -0.0220  -0.9262  -0.0238  -0.0995  -0.4628  -0.3753  -0.4714  -0.5752  }\ab\a	¼au�ZaYb\ -0.6856  -0.4173  -0.7451  -0.5752  -0.4147  -0.2618  -0.6674  -0.7279  -0.6046  -0.2983  -0.2282  -0.5879  -0.4948  -0.1910  -0.7006  ��^Za\^^\�	�\^Za�fZ�a��b -0.1958  0.5504  -0.8740  -0.4478  -0.0869  -0.8037  -0.5794  -0.2319  -0.6906  0.2270  -0.0994  0.0481  -0.1303  0.5377  -0.7154  �Ë��Zg	}YaK\Z	¹\�ZaY
 0.3193  0.0820  0.5060  0.1345  -0.4148  0.8329  -0.2230  -0.6808  -0.1809  0.0470  0.2318  -0.1018  -0.0823  0.1389  -0.2188  }Y�Yb\�	³�Z�a\^ 0.1758  -0.1929  0.6499  -0.1643  -0.0744  -0.1521  -0.2674  -0.7756  0.1443  0.1132  -0.2054  -0.2390  -0.3556  -0.1731  -0.8493  }Yfa]/��¼ -0.4081  -0.6162  -0.2824  -0.0770  -0.2671  0.0183  -0.3803  -0.3953  -0.3240  0.1425  -0.2439  -0.4671  -0.3416  -0.3272  -0.8312  �a\��	³]

]r��b 0.3026  -0.3746  0.8372  -0.0798  -0.1331  -0.0274  -0.1029  -0.8761  0.3118  0.0855  -0.2816  -0.4023  -0.2760  -0.3395  -0.6015  
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Table 2 Summary Statistics for Market Status across Jump Activities on VIX 
The table illustrates in-sample and out-of-sample market exposure of VIX, SPX and absolute 

percentage monthly change in VIX (denoted “|∆�
�/�
�|%”) to Brownian motion, small jumps and 

big jumps, respectively. The in-sample (out-of-sample) data period is from October (November) 2003 

to June (July) 2010. 
 

  Brownian Motion Small Jumps Big Jumps 

Panel A. In-Sample Period: October 2003 −−−− June 2010 

      N 18 3 60 

     VIX M 14.3750  17.1833  22.5262  

 Mdn 14.9200  14.9500  20.0750  

 Maximum 17.5900  23.5200  59.8900  

 Minimum 10.4200  13.0800  10.9100  

 Stdev 2.1561  5.5668  11.2641  

 Skewness -0.4150  0.6184  1.4012  

 Kurtosis 1.9100  1.5000  4.6556  

     SPX M 1,218.6722  1,334.0433  1,192.6618  

 Mdn 1,157.1850  1,276.6600  1,205.3050  

 Maximum 1,503.3500  1,455.2700  1,549.3800  

 Minimum 1,050.7100  1,270.2000  735.0900  

 Stdev 146.0533  105.0350  193.4184  

 Skewness 0.8154  0.7041  -0.2519  

 Kurtosis 2.2740  1.5000  2.5363  

     Ï∆�
��
� Ï% 

M 10.6093  26.5505  14.4823  

Mdn 9.6002  20.4380  9.1882  

Maximum 29.1373  44.9168  90.7506  

 Minimum 0.1958  14.2966  0.0829  

 Stdev 8.2415  16.1994  15.8050  

 Skewness 0.7916  0.5945  2.4343  

 Kurtosis 2.7660  1.5000  10.8531  

 

Panel B. Out-of-Sample Period: November 2003 −−−− July 2010 

      N 18 3 60 

     VIX M 15.3950  16.8800  22.3587  

 Mdn 15.3050  14.9500  19.0150  

 Maximum 23.5200  23.3800  59.8900  

 Minimum 10.9100  12.3100  10.4200  

 Stdev 3.4186  5.7819  11.3421  

 Skewness 0.9255  0.5449  1.4044  

 Kurtosis 3.3535  1.5000  4.6238  

     SPX M 1,225.6989  1,351.4900  1,190.5297  

 Mdn 1,180.2550  1,303.8200  1,191.4150  

 Maximum 1,530.6200  1,473.9900  1,549.3800  

 Minimum 1,058.2000  1,276.6600  735.0900  

 Stdev 141.9511  106.9537  192.7143  

 Skewness 0.8139  0.6562  -0.2342  

 Kurtosis 2.3782  1.5000  2.5329  

   1351.4900   Ï∆�
��
� Ï% 

M 14.4216  10.8502  14.1707  

Mdn 7.8559  14.2966  9.8131  

Maximum 47.9846  17.6589  90.7506  

 Minimum 0.1958  0.5952  0.0829  

 Stdev 15.5171  9.0388  14.7942  

 Skewness 1.2142  -0.5986  2.7779  

 Kurtosis 3.0866  1.5000  13.7279  
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Table 3 Out-of-Sample Hedge Fund Return and Risk across VIX Jump Activities 
The table reports summary statistics for monthly hedge fund returns (%) and risk over the 

out-of-sample period, November 2003 to July 2010. Thirteen funds are sorted into three groups based 

on whether their previous months are dominated by Brownian motion, small jumps or big jumps. These 

are the three measures to gauge hedge fund performance when applied to a single hedge fund strategy: 

(i) using maximum drawdown (MaxDD) as a downside risk measure; (ii) using adjusted conditional 

Value-at-Risk (CVaR) at the confidence level 95% as a measure of extreme tail risk; and (iii) using 

extended Sharpe ratio (ESR) as a measure of the excess return relative to risk with highly non-normal 

distributions and large tails. 
 

  Brownian Motion Small Jumps Big Jumps 

      N 18 3 60 

     Equal Weighted M 0.4055  -0.6544  0.0163  

 Mdn 0.3284  -0.2566  0.4141  

 Maximum 1.7548  0.5550  2.2767  

 Minimum -1.0853  -2.2615  -9.9303  

 Stdev 0.8161  1.4498  1.9300  

 MaxDD 0.0258  0.0282  0.1218  

 CVaR(95%) -0.0113  -0.0364  -0.0613  

 ESR 0.2454  -0.6738  -0.0754  

     Global M 0.4305  -0.7847  0.0417  

 Mdn 0.3727  -0.5700  0.3545  

 Maximum 2.5479  0.7630  3.1499  

 Minimum -1.3140  -2.5472  -9.3470  

 Stdev 1.1532  1.6655  2.1287  

 MaxDD 0.0348  0.0331  0.1216  

 CVaR(95%) -0.0170  -0.0407  -0.0630  

 ESR 0.1962  -0.6812  -0.0603  

     Relative Value Arbitrage M 0.5937  -0.4338  0.0121  

 Mdn 0.5285  0.5107  0.3362  

 Maximum 1.6514  0.8080  6.8138  

 Minimum -1.2280  -2.6202  -14.1105  

 Stdev 0.7688  1.8993  3.1299  

 MaxDD 0.0286  0.0343  0.1713  

 CVaR(95%) -0.0117  -0.0447  -0.0972  

 ESR 0.4553  -0.3981  -0.0575  

     Event Driven M 0.7250  -0.7334  0.1373  

 Mdn 0.7581  -0.7298  0.8613  

 Maximum 3.1533  0.5120  2.8059  

 Minimum -1.5361  -1.9824  -7.5259  

 Stdev 1.2762  1.2472  2.1158  

 MaxDD 0.0389  0.0249  0.1033  

 CVaR(95%) -0.0163  -0.0305  -0.0570  

 ESR 0.4172  -0.9020  -0.0228  

     Equity Hedge M 0.4331  -0.4720  -0.0386  

 Mdn 0.4799  -1.0010  0.3760  

 Maximum 3.0191  1.1620  4.4771  

 Minimum -2.5518  -1.5769  -9.9866  

 Stdev 1.5589  1.4441  2.5866  

 MaxDD 0.0511  0.0274  0.1289  

 CVaR(95%) -0.0280  -0.0258  -0.0729  

 ESR 0.1369  -0.6676  -0.0789  

     Risk Arbitrage M 0.4611  0.0533  0.4593  

 Mdn 0.4250  0.3500  0.4950  

 Maximum 3.0100  0.4600  3.2200  

 Minimum -1.5200  -0.6500  -3.4900  
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 Stdev 0.9357  0.6116  1.1078  

 MaxDD 0.0311  0.0111  0.0671  

 CVaR(95%) -0.0123  -0.0124  -0.0257  

 ESR 0.3226  -0.5218  0.2266  

     Convertible Arbitrage M 0.3920  0.0891  -0.6834  

 Mdn 0.5582  1.1387  0.0916  

 Maximum 1.3483  1.2360  6.7348  

 Minimum -0.7301  -2.1074  -34.6830  

 Stdev 0.6276  1.9028  5.5961  

 MaxDD 0.0191  0.0334  0.3724  

 CVaR(95%) -0.0099  -0.0396  -0.1811  

 ESR 0.2659  -0.1543  -0.1345  

     Merger Arbitrage M 0.3118  0.7243  0.4566  

 Mdn 0.4407  0.7380  0.6710  

 Maximum 1.7571  0.9353  2.3222  

 Minimum -2.1360  0.4995  -2.8496  

 Stdev 1.0174  0.2182  1.0299  

 MaxDD 0.0389  0.0000  0.0447  

 CVaR(95%) -0.0213  0.0031  -0.0210  

 ESR 0.0876  1.3724  0.2410  

     Distressed Restructuring M 0.9030  -0.3025  -0.4600  

 Mdn 0.9407  -0.4469  -0.0415  

 Maximum 2.2845  0.3580  3.4942  

 Minimum -1.1339  -0.8186  -11.6879  

 Stdev 0.9048  0.6014  2.5332  

 MaxDD 0.0342  0.0118  0.1458  

 CVaR(95%) -0.0103  -0.0126  -0.0812  

 ESR 0.7361  -1.2591  -0.2143  

     Equity Market Neutral M -0.0508  -1.0495  0.1206  

 Mdn -0.1628  -0.5410  0.1636  

 Maximum 1.3167  -0.4385  2.4546  

 Minimum -1.4733  -2.1691  -2.7511  

 Stdev 0.7448  0.9709  1.0461  

 MaxDD 0.0228  0.0173  0.0521  

 CVaR(95%) -0.0144  -0.0311  -0.0224  

 ESR -0.3524  -1.3313  -0.0472  

     Managed Futures M -0.1561  -1.8833  0.7755  

 Mdn -0.3900  -2.4300  0.7850  

 Maximum 5.8300  1.3900  6.8900  

 Minimum -6.4600  -4.6100  -5.3900  

 Stdev 3.5139  3.0371  3.1326  

 MaxDD 0.1188  0.0600  0.1228  

 CVaR(95%) -0.0674  -0.0692  -0.0527  

 ESR -0.1031  -0.7826  0.1890  

     Macro/CTA M -0.2037  -2.8963  0.4069  

 Mdn -0.3553  -1.3753  0.1441  

 Maximum 3.7774  0.0650  8.5356  

 Minimum -3.6818  -7.3786  -5.5904  

 Stdev 2.2072  3.9480  2.4922  

 MaxDD 0.0691  0.0744  0.1413  

 CVaR(95%) -0.0445  -0.1119  -0.0412  

 ESR -0.1850  -0.7570  0.1095  

     Trend Following M 0.2878  -3.1267  1.4263  

 Mdn 0.1700  -4.5500  0.9950  

 Maximum 7.8200  0.3300  12.7800  

 Minimum -7.2500  -5.1600  -7.2500  
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 Stdev 3.7781  3.0091  4.0046  

 MaxDD 0.1458  0.0549  0.2003  

 CVaR(95%) -0.0673  -0.0730  -0.0542  

 ESR 0.0268  -1.3041  0.3627  
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Table 4 Out-of-Sample Risk-Adjusted Alphas Respective of VIX Jump Activities 
This table shows the result that hedge fund excess returns regress against seven risk factors and three dummy variables: a	,� = ;	,�µ���µ�,��� + ;	,¶·�¶·,��� + ;	,¸·�¸·,��� + v	,�I¹º}�³�+ v	,=I�}»�� +v	,���10���� + v	,��¼¼}�I½� + v	,Áº�³I��� + v	,�º�³I³�� + v	,´º�³I�¾}� +�	,�  
where a	,�  is the return on fund � in excess of the one-month Treasury bill return (the risk-free rate) in month Z. �¸·,��� equals 1 if month Z-1 is dominated by large jumps, 

and 0 otherwise. ��µ�,��� equals 1 if month Z-1 is dominated by Brownian motion, and 0 otherwise. �¶·,��� equals 1 if month Z-1 is dominated by small jumps, and 0 

otherwise. The Fung and Hsieh (2004) model proposes seven risk factors to evaluate hedge fund performance: the S&P 500 return minus the risk-free rate, I¹º}�³; the 

Russell 2000 minus S&P 500 monthly total return, I�}»�; the monthly change in the 10-year Treasury constant maturity yield, ��10���; monthly changes in the credit 

spread defined as Moody’s Baa bond yield minus the 10-year Treasury bond yield, �¼¼}�I½; and excess returns on portfolios of lookback straddles on bonds (º�³I��), 

currencies (º�³I³�) and commodities (º�³I�¾}). 
***

 (
**

, 
*
) indicates that the Z statistics after the Newey-West correction of standard errors for heteroscedasticity and 

autocorrelation are significance in the 99% (95%, 90%) confidence interval. ��%� under the headings ��µ�,���, �¶·,��� and �¸·,��� represents the out-of-sample average 

monthly fund return (%) following the months dominated by Brownian motion, small jumps and big jumps, respectively. The groups are also further split into the scenarios ∆�
� < 0 and ∆�
� > 0. The out-of-sample period is from November 2003 to July 2010. 
 

   ��µ�,��� �¶·,��� �¸·,��� I¹º}�³ I�}»� ��10��� �¼¼}�I½ º�³I�� º�³I³� º�³I�¾} 13	Î\�b\	³���^ ¼»» 

ºYaY_ 0.4243
*
  -1.0651

**
  0.6553

***
  0.2091

***
  -0.0046  0.3422  -0.2207

***
  -0.0017  -0.0061  0.0061  

 �-value 0.0703  0.0129  0.0061  <.0001 0.8824  0.2591  0.0035  0.8304  0.1740  0.2866  

 ��%� 0.3487  -0.8823  0.2054         

 ∆�
�< 0 

ºYaY_ 0.7307***  -1.2363**  0.9842***  0.1817***  -0.0960***  0.3551  -0.2353***  0.0024  -0.0025  -0.0078  

 �-value 0.0031  0.0491  0.0002  <.0001 0.0084  0.3253  0.0071  0.7835  0.6303  0.2092  

 ��%� 0.4957  -0.7069  0.5705         

 ∆�
�> 0 

ºYaY_ 0.4965  -1.9077
***

  0.0781  0.1978
***

  0.1678
**

  -1.0055  -0.1348  -0.0074  -0.0117  0.0372
***

  

 �-value 0.2990  0.0035  0.8619  <.0001 0.0106  0.1211  0.3228  0.6733  0.1541  0.0047  

 ��%� 0.0546  -0.9700  -0.2408         �Ë�Y
	Ì\�bℎZ\� ¼»» 

ºYaY_ 0.5582  -0.8850  0.6187  0.2296
***

  -0.0137  0.5798  -0.2708
**

  -0.0027  -0.0174
**

  -0.0034  

 �-value 0.1585  0.2202  0.1256  <.0001 0.7941  0.2565  0.0353  0.8450  0.0227  0.7181  

 ��%� 0.4055  -0.6544  0.0163         

 ∆�
�< 0 

ºYaY_ 0.4744  -1.2895  0.4540  0.1992
***

  -0.1102
*
  0.7149  -0.1273  -0.0078  -0.0070  -0.0116  

 �-value 0.2506  0.2204  0.3016  <.0001 0.0742  0.2373  0.3816  0.5858  0.4150  0.2660  

 ��%� 0.5349  -0.2566  0.4059         
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 ∆�
�> 0 

ºYaY_ 1.1390  -1.2780  0.6238  0.2148
***

  0.1478  -0.5107  -0.3550  0.0036  -0.0294
**

  0.0170  

 �-value 0.1320  0.2106  0.3727  0.0004  0.1526  0.6111  0.1012  0.8949  0.0278  0.4056  

 ��%� 0.1467  -0.8533  -0.4599         Í
]uY
 ¼»» 

ºYaY_ 0.3825  -1.1529  0.4377  0.2828
***

  -0.0151  0.6938  -0.2039  -0.0073  -0.0151
*
  0.0027  

 �-value 0.3781  0.1478  0.3227  <.0001 0.7937  0.2179  0.1468  0.6304  0.0706  0.7939  

 ��%� 0.4305  -0.7847  0.0417         

 ∆�
�< 0 

ºYaY_ 0.5049  -1.5280  0.4301  0.2710
***

  -0.1025  0.7570  -0.1157  -0.0062  -0.0070  -0.0096  

 �-value 0.2983  0.2177  0.4047  <.0001 0.1549  0.2871  0.4986  0.7137  0.4873  0.4294  

 ��%� 0.6469  -0.5700  0.4521         

 ∆�
�> 0 

ºYaY_ 0.6182  -1.6642  0.2700  0.2526
***

  0.1250  -0.6126  -0.2500  -0.0133  -0.0254
*
  0.0314  

 �-value 0.4452  0.1372  0.7214  0.0002  0.2633  0.5759  0.2820  0.6545  0.0765  0.1636  

 ��%� -0.0024  -0.8921  -0.4598         �\
YZ�[\	�Y
�\ ¼»» 

ºYaY_ 0.3753  -1.1660  0.3762  0.3438
***

  -0.1222  1.5546
*
  -0.2154  -0.0309  -0.0233

*
  -0.0144  

 �-value 0.5618  0.3249  0.5683  <.0001 0.1588  0.0662  0.3028  0.1727  0.0611  0.3590  

 ��%� 0.5937  -0.4338  0.0121         

 ∆�
�< 0 

ºYaY_ -0.6002  -2.6348  -0.8297  0.3774
***

  -0.2793
***

  1.3258  0.4225
*
  -0.0347  -0.0080  -0.0160  

 �-value 0.3865  0.1393  0.2632  <.0001 0.0089  0.1944  0.0897  0.1528  0.5791  0.3596  

 ��%� 0.6679  0.5107  0.7883         

 ∆�
�> 0 

ºYaY_ 1.6242  -0.6848  1.1192  0.2258
***

  -0.0163  -0.2893  -0.7966
**

  -0.0547  -0.0349
*
  -0.0208  

 �-value 0.1367  0.6378  0.2702  0.0064  0.9115  0.8416  0.0139  0.1713  0.0666  0.4798  

 ��%� 0.4452  -0.9061  -0.9366         �[\�Z	�a�[\� ¼»» 

ºYaY_ 0.3609  -1.3808*  0.1152  0.2871***  0.0110  0.9128*  -0.0611  -0.0113  -0.0109  -0.0072  

 �-value 0.3896  0.0741  0.7870  <.0001 0.8434  0.0951  0.6504  0.4373  0.1746  0.4783  

 ��%� 0.7250  -0.7334  0.1373         

 ∆�
�< 0 

ºYaY_ 0.5234  -2.0333  0.3709  0.3251
***

  -0.0842  0.5614  -0.0986  -0.0151  -0.0049  -0.0187  

 �-value 0.3133  0.1273  0.5010  <.0001 0.2719  0.4586  0.5895  0.4024  0.6467  0.1562  

 ��%� 0.8164  -0.7298  0.4992         

 ∆�
�> 0 

ºYaY_ 0.7356  -1.8320
*
  -0.2905  0.2227

***
  0.2169

**
  0.1211  0.0270  -0.0081  -0.0247

**
  0.0238  

 �-value 0.2816  0.0547  0.6476  <.0001 0.0259  0.8947  0.8886  0.7444  0.0419  0.2070  

 ��%� 0.5421  -0.7352  -0.3051         �Ë��Zg	Î\�b\ ¼»» 

ºYaY_ 0.1953  -1.0539  0.1620  0.3887
***

  -0.0042  0.5527  -0.1266  -0.0036  -0.0147  0.0061  

 �-value 0.6979  0.2534  0.7519  <.0001 0.9505  0.3968  0.4354  0.8383  0.1270  0.6179  

 ��%� 0.4331  -0.4720  -0.0386         
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 ∆�
�< 0 

ºYaY_ 0.7871  -1.2939  0.5298  0.3646
***

  -0.0375  1.0379  -0.2545  -0.0011  -0.0061  -0.0072  

 �-value 0.2239  0.4293  0.4397  <.0001 0.6920  0.2724  0.2656  0.9600  0.6464  0.6544  

 ��%� 0.7767  -1.0010  0.2509         

 ∆�
�> 0 

ºYaY_ -0.2434  -1.6222  -0.2823  0.3878
***

  0.0776  -0.4980  0.0140  -0.0122  -0.0256
*
  0.0398

*
  

 �-value 0.7678  0.1561  0.7157  <.0001 0.4938  0.6563  0.9526  0.6882  0.0809  0.0877  

 ��%� -0.2541  -0.2075  -0.3924         ��^K	¼au�ZaYb\ ¼»» 

ºYaY_ -0.1413  -1.0145
*
  -0.0946  0.1542

***
  -0.0205  -0.5899  0.1187  -0.0114  0.0024  -0.0044  

 �-value 0.6200  0.0543  0.7444  <.0001 0.5897  0.1126  0.1984  0.2512  0.6593  0.5251  

 ��%� 0.4611  0.0533  0.4593         

 ∆�
�< 0 

ºYaY_ 0.0463  -0.9814  0.1570  0.1617
***

  -0.0739  -1.1849
**

  0.0756  -0.0094  0.0070  -0.0137  

 �-value 0.9051  0.3236  0.7046  <.0001 0.2018  0.0428  0.5828  0.4860  0.3879  0.1655  

 ��%� 0.4792  0.4600  0.5461         

 ∆�
�> 0 

ºYaY_ -0.1989  -1.4971
***

  -0.4993  0.1373
***

  0.0770  -0.3151  0.2641
**

  -0.0095  -0.0072  0.0072  

 �-value 0.6091  0.0083  0.1786  <.0001 0.1557  0.5505  0.0235  0.5068  0.2860  0.4991  

 ��%� 0.4250  -0.1500  0.3533         �]�[\aZ�u
\	¼au�ZaYb\ ¼»» 

ºYaY_ 1.2375  -0.1561  1.2144  0.5035
***

  -0.0536  1.3651  -0.6994
*
  0.0013  -0.0738

***
  -0.0395  

 �-value 0.3046  0.9433  0.3228  <.0001 0.7377  0.3811  0.0740  0.9749  0.0018  0.1780  

 ��%� 0.3920  0.0891  -0.6835         

 ∆�
�< 0 

ºYaY_ -0.4537  -2.7324  -0.7195  0.3800
***

  -0.3477
**

  1.5184  0.2668  -0.0343  -0.0277  -0.0384  

 �-value 0.6805  0.3325  0.5408  0.0007  0.0377  0.3490  0.4946  0.3718  0.2323  0.1717  

 ��%� 0.4792  1.1387  0.4383         

 ∆�
�> 0 

ºYaY_ 4.1419*  0.5923  2.5575  0.4813***  0.2726  0.1355  -1.3874**  0.0394  -0.1157***  -0.0616  

 �-value 0.0739  0.8461  0.2317  0.0057  0.3787  0.9645  0.0380  0.6333  0.0057  0.3220  

 ��%� 0.2177  -0.4357  -2.0544         }\ab\a	¼au�ZaYb\ ¼»» 

ºYaY_ -0.1515  0.0458  -0.0124  0.0996
***

  0.0820
**

  -0.3244  0.1120  0.0059  -0.0043  0.0028  

 �-value 0.6129  0.9333  0.9675  0.0001  0.0428  0.4034  0.2476  0.5698  0.4571  0.6967  

 ��%� 0.3118  0.7243  0.4566         

 ∆�
�< 0 

ºYaY_ 0.2104  -0.1140  0.3527  0.1061
***

  0.0039  -0.6514  0.0283  0.0068  -0.0012  -0.0068  

 �-value 0.5676  0.9029  0.3705  0.0035  0.9424  0.2305  0.8278  0.5949  0.8715  0.4631  

 ��%� 0.5121  0.4995  0.5833         

 ∆�
�> 0 

ºYaY_ -0.3252  -0.5420  -0.5583  0.0818  0.2258
***

  -0.5293  0.2875
**

  0.0092  -0.0111  0.0206  

 �-value 0.4950  0.4041  0.2173  0.0227  0.0017  0.4136  0.0417  0.5985  0.1813  0.1223  

 ��%� -0.0889  0.8367  0.3018         
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��^Za\^^\�	�\^Za�fZ�a��b ¼»» 

ºYaY_ 2.2847
***

  0.8356  1.9469
***

  0.1385
***

  0.0433  1.2284
*
  -0.9688

***
  -0.0248  -0.0127  -0.0046  

 �-value <.0001 0.3531  0.0002  0.0010  0.5089  0.0564  <.0001 0.1496  0.1758  0.7019  

 ��%� 0.9030  -0.3025  -0.4600         

 ∆�
�< 0 

ºYaY_ 2.3610
***

  0.4105  2.2827
***

  0.0072  0.0441  2.1798
***

  -1.0635
***

  -0.0528
***

  0.0098  -0.0099  

 �-value <.0001 0.7549  0.0002  0.8806  0.5636  0.0063  <.0001 0.0054  0.3650  0.4498  

 ��%� 0.9187  -0.4469  -0.0140         

 ∆�
�> 0 

ºYaY_ 2.9765
***

  0.6271  1.7546
**

  0.2290
***

  0.1539  0.5241  -0.8814
***

  0.0164  -0.0322
**

  0.0162  

 �-value 0.0009  0.5637  0.0258  0.0004  0.1664  0.6280  0.0006  0.5770  0.0258  0.4597  

 ��%� 0.8716  -0.2303  -1.0050         �Ë��Zg	}YaK\Z	¹\�ZaY
 ¼»» 

ºYaY_ 0.4146  -0.7701  0.7904
**

  -0.0128  -0.0342  0.4776  -0.2664
**

  0.0178  0.0023  -0.0092  

 �-value 0.1892  0.1820  0.0155  0.6202  0.4145  0.2420  0.0101  0.1057  0.7020  0.2307  

 ��%� -0.0508  -1.0495  0.1206         
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Panel A. Quintiles of VIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Panel B. Quintiles of absolute percentage change in VIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel C. Qunitiles of SPX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hedge fund monthly returns across five quintiles of VIX, absolute percentage change in 

VIX and SPX. Quintile 1 (Q1) consists of the months with the smallest VIX in Panel A, absolute 

percentage change in VIX (|º\af\�ZYb\	�ℎY�b\	��	�
�|) in Panel B, and S&P 500 Index (SPX) in 

Panel C. Quintile 5 (Q5) indicates the months with the largest VIX, absolute percentage change in VIX, 

and SPX, respectively. The sample period is October 2003 to July 2010. 
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Panel A. VIX log difference (“Log-Return”) densities sampled at the 15 second frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Panel B. VIX log difference (“Log-Return”) densities sampled at the daily frequency 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. VIX log difference densities over the period from October 1, 2003 to June 30, 2010. 

Overnight log-returns are excluded from the sample. Panel A displays the VIX log difference density 

and its tails sampled at the 15 second frequency. Panel B presents the VIX log difference density and its 

tails sampled at the daily frequency. Tails of log-returns � are given by |�| ≥ 0.05. Simple visual 

inspection of the tails of both log difference distributions suggests the presence of jumps and 

right-skewed. Excess skewness and kurtosis for 15-second log differences are, however, significantly 

larger than those for daily log differences, as indicative of more small jumps activity in ultra-high 

frequency VIX data.  
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Panel A. Empirical distribution of ÐÑ for VIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B. Average value of ÐÑ as a function of the sampling interval for VIX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Test statistic of ÐÑ for VIX from Q4 2003 to Q2 2010. Test statistic IJ is to test for the 

presence of jumps. Panel A displays empirical distribution of IJ for VIX, whereas Panel B shows 

average value of IJ as a function of the sampling interval for VIX. The value of IJ is calculated for a 

range of values of � from 3 to 6, Δ�  from 15 seconds to 2 minutes, and K =2, 3. The values of IJ 
between _���1/K� =0.3333 and _Y~�1/√K� =0.7071 are indicative of noise dominating, the values 

around 1 indicate the presence of jumps, and the values approach K$/=�� ∈ [1.4142, 9] if no jumps 

exist. 
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Panel A. Empirical distribution of ÐÒÓ for VIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B. Average value of ÐÒÓ as a function of the sampling interval for VIX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Test statistic of ÐÒÓ for VIX from Q4 2003 to Q2 2010. Test statistic Ihi is to test 

whether jumps have finite or infinite activity. Panel A displays empirical distribution of Ihi for VIX, 

whereas Panel B shows average value of Ihi as a function of the sampling interval for VIX. The value 

of Ihi is calculated for a range of values of � from 3 to 6, 5 from 5 to 10 standard deviations, Δ�  

from 15 seconds to 2 minutes, and K =2, 3. The values of Ihi between _���1/K� =0.3333 and _Y~�1/K� =0.5 are indicative of noise dominating, the values around 1 indicate infinite activity, and 

the values approach K$/=�� ∈ [1.4142, 9] if finite activity exists. 
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Panel A. Empirical distribution of ÐÔÓ for VIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel B. Average value of ÐÔÓ as a function of the sampling interval for VIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Test statistic of ÐÔÓ for VIX from Q4 2003 to Q2 2010. Test statistic I+i is to test the null 

being infinite activity jumps present and no significant noise, and the alternative of finite activity jumps 

present and no significant noise, by choosing j > 1 and �k > � > 2. Panel A displays empirical 

distribution of I+i for VIX, whereas Panel B shows average value of I+i as a function of the 

sampling interval for VIX. The value of I+i around j$l�$ is indicative of infinite jump activity, and 

the value around 1 indicates jumps have finite activity.  
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Panel A. Empirical distribution of ÐÕ for VIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B. Average value of ÐÕ as a function of the sampling interval for VIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Test statistic of ÐÕ for VIX from Q4 2003 to Q2 2010. Test statistic Ip is to test whether 

Brownian motion is present. Panel A displays empirical distribution of Ip for VIX, whereas Panel B 

shows average value of Ip as a function of the sampling interval for VIX. The value of Ip  is 

calculated for a range of values of � from 1 to 1.75, 5 from 5 to 10 standard deviations, Δ�  from 15 

seconds to 2 minutes, and K = 2, 3. The values of Ip  between _���K��$/=� = 1.0905 and _Y~�K��$/=� =1.7321 are indicative of the presence of Brownian motion, the values around 1 indicate 

no Brownian motion, and the values between _���1/K� = 0.3333 and _Y~�1/K� =0.5 indicate 

noise dominating. 
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Panel A. Empirical distribution of fraction of Ö× attributable to Brownian component for VIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B. Average fraction of Ö× attributable to Brownian component as a function of the 

sampling interval 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Fraction of Ö× attributable to Brownian component for VIX from Q4 2003 to Q2 2010. s� relative magnitude is examined in the presence of a jump and a continuous component. Panel A 

displays empirical distribution of fraction of s�  attributable to Brownian component for VIX, 

whereas Panel B shows average proportion of s� attributable to the continuous component as a 

function of the sampling interval for VIX. The fraction of s� from the Brownian component using the 

twenty-seven quarters, values of 5 from 2 to 5 standard deviations, and Δ�  from 15 seconds to 2 

minutes. 
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Panel A. Empirical distribution of the index of jump activity Ø for VIX 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B. Average value of the index of jump activity Ø as a function of the sampling interval 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The index of jump activity Ø for VIX from Q4 2003 to Q2 2010. Panel A displays 

Empirical distribution of the index of jump activity v for VIX, whereas Panel B shows Average value 

of the index of jump activity v as a function of the sampling interval for VIX. The degree of infinite 

jump activity v is estimated using the twenty-seven quarters, values of j ranging from 1.5 to 1.75, 

the value of 5 at 2, and Δ� from 15 seconds to 2 minutes. 
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Figure 9. Out-of-sample monthly fund returns conditional on jump activities on ultra-high 

frequency VIX data. The graph reports out-of-sample average monthly returns of each sub-group over 

the sample period November 2003 to July 2010. Thirteen funds are sorted into three groups based on 

whether their previous months are dominated by Brownian motion, small jumps or big jumps. Within 

each group, we further split funds into those that have negative change in VIX in the previous month 

and those that do not. 
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Figure 10. Out-of-sample monthly average risk-adjusted alpha. Thirteen hedge funds are sorted 

into three groups based on whether their previous months are dominated by Brownian motion, small 

jumps or big jumps. Within each group, we further split funds into those that have negative change in 

VIX in the previous month and those that do not. To adjusted risk, the study evaluates the performance 

of hedge funds relative to the 7-factor model. The graph reports out-of-sample risk-adjusted alpha of 

each sub-group over the sample period November 2003 to July 2010. 
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Figure 11. Out-of-sample risk-adjusted alpha. Thirteen hedge funds are sorted into three groups 

based on whether their previous months are dominated by Brownian motion, small jumps or big jumps. 

Within each group, we further split funds into those that have negative change in VIX in the previous 

month and those that do not. To adjusted risk, the study evaluates the performance of hedge funds 

relative to the 7-factor model. The graph reports out-of-sample risk-adjusted alpha of each sub-group 

over the sample period November 2003 to July 2010. 
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